Understanding The Life Cycle Of FMDV In Endemic Settings

Luis L. Rodriguez Foreign Animal Disease Research Unit

Plum Island Animal Disease Center Orient, NY

FMD Ecology

- Epidemiological knowledge on FMD clinical occurrence is extensive
 - Geographic distribution (pools) of serotypes/ topotypes derived primarily from clinical occurrence
- Less known about FMD ecology:
 - Where is FMD between outbreaks?
 - Role of persistence (e.g Asian buffalo) in long term maintenance?
 - What determines emergence of epidemic

viral strains?

Subclinical Infections

- In endemic settings the great majority of infections are subclinical
 - Prior immunity (vaccination, maternal)
 - Prior exposure
 - Other factors genetic resistance?
- Subclinical infections:
 - Acute
 - replication at primary site clears infection
 - Chronic

 Replication at primary site – does not clear infection (carrier definition >28 dpi)

When we study clinical FMD are we seeing the full picture ?

Acute infections, outbreaks

Serotype A, O

Example 1: VIETNAM MOLECULAR EPIDEMIOLOGY, SURVEILLANCE AND PREDICTIVE TOOLS FOR FMD CONTROL IN VIETNAM

58-1940-0-070F, 057 14S 6/1/2010-9/30/2012

Co-Pls: Dr. Luis Rodriguez Dr. Jonathan Arzt

Dr. Thanh Long Ngo, DAH, HCMC Dr. Ho Huu Dung, DAH, Hanoi

Collaborators Dr. Helena Ferreira – ORISE Dr. Carla Huston, Mississippi State University

Design

Objective 1 – Acute Clinical Samples

- Samples collected during outbreak
- Pigs, buffalo and cattle
- Northern and Southern Vietnam

Objective 2 – Longitudinal Field Study

- HCMC region transmission cells
- Hanoi-SonLa region carrier cattle and buffalo (field necropsy)

Objective 3 – Persistent buffalo studies

- Field necropsies
- Molecular characterization (tissue level, cytokine mRNA, protein expression)

(Dr. Dung and Dr. Arzt will present progress of this project in their presentation)

Example 2 PAKISTAN

CHARACTERIZATION OF LOCAL ISOLATES OF FMDV AND DEVELOPMENT OF VACCINES

58-1940-7-161F; 057 002S 9/1/2007 - 8/31/2012

REAL TIME DATA ANALYSIS AND RESEARCH CAPACITY BUILDING TOWARDS FMD CONTROL IN PAKISTAN

1940-32000-052-14S 09/27/2012 - 09/26/2014

> Dr. Khalid Naeem – NARC Dr. Umer Farooq – NARC Dr. Muhammadimam Afzal, FAO Dr. Manzoor Hussain, NVL

Collaborators: Dr. Zaheer Ahmed Dr. Anna Ludi

Study Design

- Acute Clinical Samples

- Clinical case reports, geographic location, demographics, etc
- Clinical samples, viruses, sequence
- Longitudinal Field Study
- Serological survey of farms for NSP positive animals, probang, history
- Selection of 40 farms for sampling (probang) 4X year for 1 year ==
- NSP-ELISA, RT-PCR and virus
- Establish panel of reference sera for vaccine matching testing
- Vaccination of 10 cattle and 10 buffalo with commercial vaccine to be used in field
- Serum collection at 0, 21 dpv, boost vaccination
- Serum collection at 42 dpv
- Carry out vaccine matching studies

(More details in next presentation – U. Farooq et al)

Example 3 CAMEROON TRANSMISSION AND EVOLUTION STUDIES OF FMDV IN LIVESTOCK IN THE LAKE CHAD BASIN

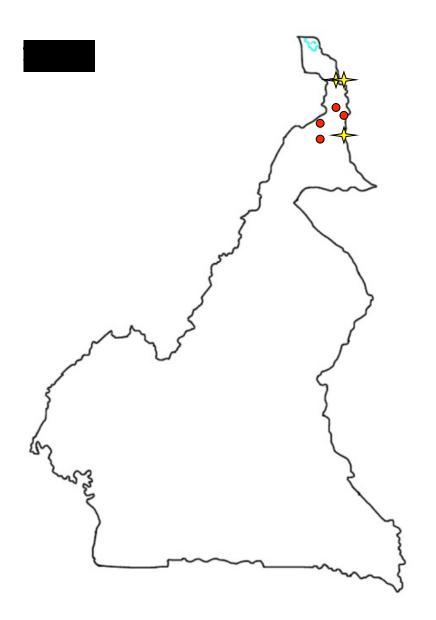
G F R Content of the second Research Alliance Collaborators: Dr. Rebecca Garabed, Laura Pomeroy, Ohio State University

Dr. Simon Dickmu, LANAVET. Garoua Cameroon

> Dr. Zaheer Ahmed Dr. Anna Ludi Dr. Carla Bravo-Rueda

Objective

- To understand the epidemiology of infectious diseases in the ecological context of networks of host movement
- How different networks of livestock movement affect disease epidemiology


Sampling strategy


	Routine sampling			Additional sampling
Group	Mobile herds	Sedentary herds	Transboundary trade routes/ market	Reports of clinical disease
Number of herds	15	15	Variable	Variable
Animals / herd	5 / herd ^{a,b}	5 / herd ^{a,b}	10-30 / sampling day	Up to 10 infected individuals
Sample frequency	2x year (rainy season/ dry season)	2x year (rainy season/ dry season)	4x year (2x rainy season/ 2x dry season)	Sampling at report
Samples / activity	Serum, probang, survey	Serum, probang, survey	Serum, probang, survey	Serum, probang, abbreviated survey, lesion swab/ tissue sample/ vesicular fluid

SAMPLING LOCATIONS

CONCLUSIONS

- Studies combining clinical and subclinical surveillance are necessary to understand ecology
- Longitudinal studies help understand virus circulation (life cycle?)
- Characterization of persistent animals viruses necessary to assess their role in long term maintenance of infection
- Understanding where the virus hides between outbreaks will help target control programs
- This information is relevant to modeling control programs in the both endemic and non-endemic regions

Funding Acknowledgements

- USDA-ARS Offshore Research Fund
- USAID BEP
- NSF
- DHS
- DoD-DTRA

Thank you! *XIN CẢM ƠN*

PROGR

)isease Bic